Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Polymers (Basel) ; 15(19)2023 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-37836009

RESUMO

Growing concerns about environmental issues and global warming have garnered increased attention in recent decades. Consequently, the use of materials sourced from renewable and biodegradable origins, produced sustainably, has piqued the interest of scientific researchers. Biodegradable and naturally derived polymers, such as cellulose and polylactic acid (PLA), have consistently been the focus of scientific investigation. The objective is to develop novel materials that could potentially replace conventional petroleum-based polymers, offering specific properties tailored for diverse applications while upholding principles of sustainability and technology as well as economic viability. Against this backdrop, the aim of this review is to provide a comprehensive overview of recent advancements in research concerning the use of polylactic acid (PLA) and the incorporation of cellulose as a reinforcing agent within this polymeric matrix, alongside the application of 3D printing technology. Additionally, a pivotal additive in the combination of PLA and cellulose, polyethylene glycol (PEG), is explored. A systematic review of the existing literature related to the combination of these materials (PLA, cellulose, and PEG) and 3D printing was conducted using the Web of Science and Scopus databases. The outcomes of this search are presented through a comparative analysis of diverse studies, encompassing aspects such as the scale and cellulose amount added into the PLA matrix, modifications applied to cellulose surfaces, the incorporation of additives or compatibilizing agents, variations in molecular weight and in the quantity of PEG introduced into the PLA/cellulose (nano)composites, and the resulting impact of these variables on the properties of these materials.

2.
Polymers (Basel) ; 14(3)2022 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-35160428

RESUMO

Spent coffee grounds (SCG) are a current subject in many works since coffee is the second most consumed beverage worldwide; however, coffee generates a high amount of waste (SCG) and can cause environmental problems if not discarded properly. Therefore, several studies on SCG valorization have been published, highlighting its waste as a valuable resource for different applications, such as biofuel, energy, biopolymer precursors, and composite production. This review provides an overview of the works using SCG as biopolymer precursors and for polymer composite production. SCG are rich in carbohydrates, lipids, proteins, and minerals. In particular, carbohydrates (polysaccharides) can be extracted and fermented to synthesize lactic acid, succinic acid, or polyhydroxyalkanoate (PHA). On the other hand, it is possible to extract the coffee oil and to synthesize PHA from lipids. Moreover, SCG have been successfully used as a filler for composite production using different polymer matrices. The results show the reasonable mechanical, thermal, and rheological properties of SCG to support their applications, from food packaging to the automotive industry.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...